Labfans是一个针对大学生、工程师和科研工作者的技术社区。 | 论坛首页 | 联系我们(Contact Us) |
![]() |
|
![]() |
#1 |
初级会员
注册日期: 2008-09-10
年龄: 61
帖子: 4
声望力: 0 ![]() |
![]()
fs[x_]=Integrate[Sin[t]/((Cos[t]+0.015*Cos[t]/1.2-(Cos[t])^2))^5,{t,0,x}]
|
![]() |
![]() |
![]() |
#2 |
初级会员
注册日期: 2009-07-30
帖子: 6
声望力: 0 ![]() |
![]()
In[27]:= fs[x]
Out[27]= -1. If[ Cos[x] \[NotElement] Reals || 0 <= Re[Cos[x]] <= 1.0125, (-1.04621*10^7 + 196.649 I) + (30773.6 - 28700. Cos[3. x] + 15166.2 Cos[4. x] - 6279.32 Cos[5. x] + 1796.76 Cos[6. x] - 253.512 Cos[7. x] + 41498.6 Log[Cos[x]] - 42086.1 Cos[3. x] Log[Cos[x]] + 24091.4 Cos[4. x] Log[Cos[x]] - 11256.5 Cos[5. x] Log[Cos[x]] + 4081.69 Cos[6. x] Log[Cos[x]] - 1014.05 Cos[7. x] Log[Cos[x]] + 125.191 Cos[8. x] Log[Cos[x]] + Cos[2. x] (44206.2 + 61633.6 Log[Cos[x]] - 61633.6 Log[-1.0125 + 1. Cos[x]]) - 41498.6 Log[-1.0125 + 1. Cos[x]] + 42086.1 Cos[3. x] Log[-1.0125 + 1. Cos[x]] - 24091.4 Cos[4. x] Log[-1.0125 + 1. Cos[x]] + 11256.5 Cos[5. x] Log[-1.0125 + 1. Cos[x]] - 4081.69 Cos[6. x] Log[-1.0125 + 1. Cos[x]] + 1014.05 Cos[7. x] Log[-1.0125 + 1. Cos[x]] - 125.191 Cos[8. x] Log[-1.0125 + 1. Cos[x]] + (0. + 0. I) Sin[ x] + (0. + 0. I) Log[Cos[x]] Sin[ x] + (0. + 0. I) Log[-1.0125 + 1. Cos[x]] Sin[x] + Cos[ x] (-56644.5 - 77073.9 Log[Cos[x]] + 77073.9 Log[-1.0125 + 1. Cos[x]] + ((0. + 0. I) + (0. + 7.11628*10^-12 I) Log[ Cos[x]]) Sin[x]) + (0. + 0. I) Log[-1.0125 + 1. Cos[x]] Sin[2. x] + (0. + 0. I) Sin[ 3. x] + (0. + 0. I) Log[Cos[x]] Sin[ 3. x] + (0. + 0. I) Log[-1.0125 + 1. Cos[x]] Sin[ 3. x] + (0. + 0. I) Sin[4. x] + (0. + 0. I) Log[Cos[x]] Sin[ 4. x] + (0. + 0. I) Log[-1.0125 + 1. Cos[x]] Sin[ 4. x] + (0. + 0. I) Sin[5. x] + (0. + 0. I) Log[Cos[x]] Sin[ 5. x] + (0. + 0. I) Log[-1.0125 + 1. Cos[x]] Sin[ 5. x] + (0. + 0. I) Sin[6. x] + (0. + 0. I) Log[Cos[x]] Sin[ 6. x] + (0. + 0. I) Log[-1.0125 + 1. Cos[x]] Sin[ 6. x] + (0. + 0. I) Sin[7. x] + (0. + 0. I) Log[Cos[x]] Sin[ 7. x] + (0. + 0. I) Log[-1.0125 + 1. Cos[x]] Sin[ 7. x] + (0. + 0. I) Log[Cos[x]] Sin[ 8. x] + (0. + 0. I) Log[-1.0125 + 1. Cos[x]] Sin[ 8. x])/(662.966 + 984.634 Cos[2. x] - 672.351 Cos[3. x] + 384.875 Cos[4. x] - 179.83 Cos[5. x] + 65.2075 Cos[6. x] - 16.2 Cos[7. x] + 2. Cos[8. x] + Cos[x] (-1231.3 + (0. + 1.13687*10^-13 I) Sin[x]) + (0. + 0. I) Sin[x] + (0. + 0. I) Sin[3. x] + (0. + 0. I) Sin[ 4. x] + (0. + 0. I) Sin[5. x] + (0. + 0. I) Sin[ 6. x] + (0. + 0. I) Sin[7. x] + (0. + 0. I) Sin[8. x]), Integrate[1/((1.0125 - 1. u)^5 u^5), {u, 1, Cos[x]}, Assumptions -> ! (Cos[x] \[NotElement] Reals || 0 <= Re[Cos[x]] <= 1.0125)]] In[28]:= fs[1] Out[28]= 1.04621*10^7 + 3.1789*10^-6 I In[29]:= fs[0] Out[29]= 0 In[30]:= fs[.5] Out[30]= 1.04601*10^7 + 3.17872*10^-6 I |
![]() |
![]() |
![]() |
#3 |
初级会员
注册日期: 2009-07-30
帖子: 6
声望力: 0 ![]() |
![]()
我也觉得有意思.
In[1]:= fs[x_] := Integrate[ Sin[t]/((Cos[t] + 0.015*Cos[t]/1.2 - (Cos[t])^2))^5, {t, 0, x}] In[2]:= {Cos[t] -> u, -Sin[t] DifferentialD[t] -> DifferentialD[u]} integrand = -1/(u + .015 u/1.2 - u^2)^5 Out[2]= {Cos[t] -> u, -DifferentialD[t] Sin[t] -> DifferentialD[u]} Out[3]= -(1/(1.0125 u - u^2)^5) In[4]:= fs[x_] := Integrate[integrand, {u, 1, Cos[x]}] In[5]:= Apart[integrand] Out[5]= 0.939777/(-1.0125 + u)^5 - 4.64087/(-1.0125 + u)^4 + 13.7507/(-1.0125 + u)^3 - 31.6889/(-1.0125 + u)^2 + 62.5954/(-1.0125 + u) - 0.939777/u^5 - 4.64087/u^4 - 13.7507/u^3 - 31.6889/u^2 - \ 62.5954/u In[6]:= {Integrate[%[[1]], {u, 1, Cos[x]}], Integrate[%[[2]], {u, 1, Cos[x]}], Integrate[%[[3]], {u, 1, Cos[x]}], Integrate[%[[4]], {u, 1, Cos[x]}], Integrate[%[[5]], {u, 1, Cos[x]}], Integrate[%[[6]], {u, 1, Cos[x]}], Integrate[%[[7]], {u, 1, Cos[x]}], Integrate[%[[8]], {u, 1, Cos[x]}], Integrate[%[[9]], {u, 1, Cos[x]}], Integrate[%[[10]], {u, 1, Cos[x]}]} Out[6]= {0.939777 If[ Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals, 1.024*10^7 - 0.25/(-1.0125 + Cos[x])^4, Integrate[1/(-1.0125 + u)^5, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals)]], -4.64087 If[ Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals, -170667. - 0.333333/(-1.0125 + Cos[x])^3, Integrate[1/(-1.0125 + u)^4, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals)]], 13.7507 If[Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals, 3200. - 0.5/(-1.0125 + Cos[x])^2, Integrate[1/(-1.0125 + u)^3, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals)]], -31.6889 If[ Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals, -80. - 1./(-1.0125 + Cos[x]), Integrate[1/(-1.0125 + u)^2, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals)]], 62.5954 If[ Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals, (4.38203 - 3.14159 I) + Log[-1.0125 + Cos[x]], Integrate[1/(-1.0125 + u), {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] <= 1.0125 || Cos[x] \[NotElement] Reals)]], -0.939777 If[ Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals, 1/4 - Sec[x]^4/4, Integrate[1/u^5, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals)]], -4.64087 If[ Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals, 1/3 - Sec[x]^3/3, Integrate[1/u^4, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals)]], -13.7507 If[ Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals, -(1/2) Tan[x]^2, Integrate[1/u^3, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals)]], -31.6889 If[ Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals, 1 - Sec[x], Integrate[1/u^2, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals)]], -62.5954 If[ Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals, Log[Cos[x]], Integrate[1/u, {u, 1, Cos[x]}, Assumptions -> ! (Re[Cos[x]] >= 0 || Cos[x] \[NotElement] Reals)]]} In[7]:= % /. x -> 1 Out[7]= {9.62331*10^6, 792028., 43971.5, 2468.01, 227.326 + 0. I, 2.52193, 8.26076, 16.6763, 26.9615, 38.5354} In[8]:= Apply[Plus, %] Out[8]= 1.04621*10^7 + 0. I In[9]:= %%% /. x -> 0 Out[9]= {0., 0., 0., 0., 0. + 0. I, 0, 0, 0, 0, 0} In[10]:= %%%% /. x -> .5 Out[10]= {9.62261*10^6, 791413., 43624.7, 2300.24, 148.91 + 0. I, 0.161163, 0.741877, 2.05193, 4.42042, 8.17398} In[11]:= Apply[Plus, %] Out[11]= 1.04601*10^7 + 0. I 这样,在虚数符号前的系数就是0.了,是不是计算精度的问题? |
![]() |
![]() |