Labfans是一个针对大学生、工程师和科研工作者的技术社区。 论坛首页 | 联系我们(Contact Us)
MATLAB爱好者论坛-LabFans.com
返回   MATLAB爱好者论坛-LabFans.com > 工程数学软件 > MATLAB论坛
MATLAB论坛 一切MATLAB相关问题在此讨论。
 
 
主题工具 显示模式
旧 2009-04-30, 06:54   #1
kathy_hanyu
初级会员
 
注册日期: 2009-04-30
帖子: 1
声望力: 0
kathy_hanyu 正向着好的方向发展
默认 能否帮小妹看看这题啊。。。?在线等~谢谢!!!

Consider the following predator-prey model for sharks (S) and fish (F)
F’ = a F (1-F/c) - v F S - d(1- e-hF),
S’ = -b S + w F S,
where ‘ stands for the derivative d/dt with respect to time t. The coefficients a,b,c,d,h,v,w are all positive. The last term,
d(1- e-hF), in the first equation models people fishing. We have a fishing quota (d) which we shall vary (we would not want
the fish to become extinct) and the exponential term describes the fact that it is hard to catch fish if the population is very
small.
(i) Discuss the meaning of the individual terms that appear in the differential-equations system and argue why this
system models the predator-prey situation between two species (sharks and fish).
(ii) For a=1200, c=40, v=30 and b=400, d=8000, w=30, h= 1/8,
a) show that F=40/3 and S = 20/3 + 20*e-5/3 is a time-independent solution (equilibria);
b) use pplane7 in Matlab to investigate the system: Describe how solutions behave for large values of t and interpret
these results in terms of shark and fish populations. Support your study by appropriate plots of solutions.
(iii) Repeat the steps from part (ii) where we change d to d=10900 while keeping the other parameters as in part (ii).
(iv) Discuss the differences between the cases (ii) and (iii).
Note: Experiment with the minimum and maximum values of F,S in pplane7 to make sure you capture the region of
interest.
麻烦各位大侠了~~~
kathy_hanyu 当前离线   回复时引用此帖
 

主题工具
显示模式

发帖规则
不可以发表新主题
不可以发表回复
不可以上传附件
不可以编辑自己的帖子

启用 BB 代码
论坛启用 表情符号
论坛启用 [IMG] 代码
论坛禁用 HTML 代码



所有时间均为北京时间。现在的时间是 16:39


Powered by vBulletin
版权所有 ©2000 - 2025,Jelsoft Enterprises Ltd.