![]() |
[求助]遗传算法选择部分的问题
%Generic Algorithm for function f(x1,x2) optimum
clear all; close all; %Parameters Size=50; G=200; CodeL=10; umax=2.048; umin=-2.048; E=round(rand(Size,2*CodeL)); %Initial Code初始化代码 %function[bin_gen,bits]=encoding(min_var,max_var,scale_var,popsize) %bits=ceil(log2(max_var,min_var)./scale_var); %bin_gen=randint(popsize,sum(bits)); %实际精度为scale_dec=(max_var-min_var)/(2^bits-1); %Main Program主程序 for k=1:1:G time(k)=k; for s=1:1:Size m=E(s,:); y1=0;y2=0; %Uncoding解码 m1=m(1:1:CodeL); for i=1:1:CodeL y1=y1+m1(i)*2^(i-1); end x1=(umax-umin)*y1/1023+umin;% a=amin+b*(amax-amin)/(2^m-1) m2=m(CodeL+1:1:2*CodeL); for i=1:1:CodeL y2=y2+m2(i)*2^(i-1); end x2=(umax-umin)*y2/1023+umin; F(s)=100*(x1^2-x2)^2+(1-x1)^2; end %******Step 1 : Evaluate Bestfi ****** fi=100*exp(-100*F); %Fitness Function fi=F; [Orderfi,indexfi]=sort(fi,'descend'); %Arranging fi small to bigger Bestfi=Orderfi(Size); %Let Bestfi=max(fi) BestS=E(indexfi(Size),:); %Let BestS=E(m), m is the Indexfi belong to max(fi) bfi(k)=Bestfi; %****** Step 2 : Select and Reproduct Operation****** fi_sum=sum(fi); fi_Size=(Orderfi/fi_sum)*Size; fi_S=floor(fi_Size); %Selecting Bigger fi value kk=1; for i=1:1:Size for j=1:1:fi_S(i) %Select and Reproduce TempE(kk,:)=E(indexfi(i),:); kk=kk+1; %kk is used to reproduce end end %************ Step 3 : Crossover Operation ************ pc=0.80; n=ceil(20*rand); for i=1:2:(Size-1) temp=rand; if pc>temp %Crossover Condition for j=n:1:20 TempE(i,j)=E(i+1,j); TempE(i+1,j)=E(i,j); end end end TempE(Size,:)=BestS; E=TempE; %************ Step 4: Mutation Operation ************** %pm=0.001; %pm=0.001-[1:1:Size]*(0.001)/Size; %Bigger fi, smaller Pm %pm=0.0; %No mutation pm=0.1; %Big mutation for i=1:1:Size for j=1:1:2*CodeL temp=rand; if pm>temp %Mutation Condition if TempE(i,j)==0 TempE(i,j)=1; else TempE(i,j)=0; end end end end %Guarantee TempPop(30,:) is the code belong to the best individual(max(fi)) TempE(Size,:)=BestS; E=TempE; end Min_Value=Bestfi BestS x1 x2 figure(1); plot(time,bfi); xlabel('times');ylabel('Best F'); 以上是一个Rosenbrock 函数求最小值的程序,程序中的选择部分用的是轮盘赌的方式,我想请教一下哪位高手会用联赛选择的方式做一下选择部分啊,谢谢了! |
回复: [求助]遗传算法选择部分的问题
那就选择相应的部分修改成你需要的程序即可
|
所有时间均为北京时间。现在的时间是 15:38。 |
Powered by vBulletin
版权所有 ©2000 - 2025,Jelsoft Enterprises Ltd.