![]() |
Grosper curve
[B]Q.Gosper curve, 4 steps
Axiom: XF Production rules: Newx=X+YF++YF-FX- - FXFX-YF+ Newy=-FX+YFYF+ + YF+FX- - FX-Y Constants: alpha=0; θ=pi/3 [/B] 下面是我做的答案...但出來的图就跟我在網上看的不一样..不知道出了什么问题...可以替我看一下..謝謝. function [X,Y]=Gosper_curve(Lmax) Axiom='XF'; Newf='F'; Newx='X+YF++YF-FX--FXFX-YF+'; Newy='-FX+YFYF++YF+FX--FX-Y'; theta=pi/3; alpha=0; p=[0;0]; p=Coord(p,Lmax,Axiom,Newf,Newx,N ewy,alpha,theta); M=size(p,2); X=p(1:1,1:M); Y=p(2:2,1:M); figure(1); plot(X,Y,'Color','k'); set(gca,'xtick',[],'ytick',[]); set(gca,'XColor','w','YColor','w '); function z=Coord(p,Lmax,Axiom,Newf,Newx,N ewy,alpha,theta) Rule=Gosper_syst(Lmax,Axiom,Newf ,Newx,Newy,1,''); M=length(Rule); for i=1:M Tmp=p(1:2,size(p,2):size(p,2)); if Rule(i)=='F' R=[cos(alpha);sin(alpha)]; R=R/(2^Lmax); Tmp=Tmp+R; p=cat(2,p,Tmp); end if Rule(i)=='+' alpha=alpha+theta; end if Rule(i)=='-' alpha=alpha-theta; end; end z=p; function z1=Gosper_syst(Lmax,Axiom,Newf,N ewx,Newy,n,tmp) if n<=Lmax if n==1 tmp=Axiom; end M=length(tmp); tmp1=''; for i=1:M if tmp(i)=='F' tmp1=strcat(tmp1,Newf); end if tmp(i)=='X' tmp1=strcat(tmp1,Newx); end if tmp(i)=='Y' tmp1=strcat(tmp1,Newy); end if not(tmp(i)=='F') &¬(tmp(i)=='X') &¬(tmp(i)=='Y') tmp1=strcat(tmp1,tmp(i)); end end tmp=tmp1; n=n+1; tmp=Gosper_syst(Lmax,Axiom,Newf, Newx,Newy,n,tmp); end z1=tmp; |
所有时间均为北京时间。现在的时间是 14:43。 |
Powered by vBulletin
版权所有 ©2000 - 2025,Jelsoft Enterprises Ltd.