who_knows
2007-08-22, 01:53
我写了如下几行代码
net.trainParam.epochs=100;
net.trainParam.goal=0.0001;
net = init(net);
net = train(net,P,T);%training
然后想取出net的一些值,例如inputWeights,layerWeights,应该是矩阵,怎么取呢?用net.layerWeights只能取出
K>> net.layerWeights
ans =
[] []
[1x1 struct] []
**************************以下是net的内容****************************
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
targetConnect: [0 1]
numOutputs: 1 (read-only)
numTargets: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
targets: {1x2 cell} containing 1 target
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: 'trains'
initFcn: 'initlay'
performFcn: 'mse'
trainFcn: 'trainrp'
parameters:
adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .show, .goal, .time,
.min_grad, .max_fail, .delt_inc, .delt_dec,
.delta0, .deltamax
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
userdata: (user stuff)
net.trainParam.epochs=100;
net.trainParam.goal=0.0001;
net = init(net);
net = train(net,P,T);%training
然后想取出net的一些值,例如inputWeights,layerWeights,应该是矩阵,怎么取呢?用net.layerWeights只能取出
K>> net.layerWeights
ans =
[] []
[1x1 struct] []
**************************以下是net的内容****************************
net =
Neural Network object:
architecture:
numInputs: 1
numLayers: 2
biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]
targetConnect: [0 1]
numOutputs: 1 (read-only)
numTargets: 1 (read-only)
numInputDelays: 0 (read-only)
numLayerDelays: 0 (read-only)
subobject structures:
inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
outputs: {1x2 cell} containing 1 output
targets: {1x2 cell} containing 1 target
biases: {2x1 cell} containing 2 biases
inputWeights: {2x1 cell} containing 1 input weight
layerWeights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: 'trains'
initFcn: 'initlay'
performFcn: 'mse'
trainFcn: 'trainrp'
parameters:
adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .show, .goal, .time,
.min_grad, .max_fail, .delt_inc, .delt_dec,
.delta0, .deltamax
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
userdata: (user stuff)