lijia
2009-03-16, 23:57
要画一个二维函数图,自变量是z,因变量为S4,程序如下面所示:
l1=100;
f=5;
I=[1,0;0,1];
z=[0:5:20];
for j=1:1:4;
B=((1-l1/f)*z(j)+l1)*I;
end;
I1=[0,0;0,0];
A1=[A,I1;I1,A];
B1=[B,I1;I1,-B];
og=2*10^-3;
wx=10^-3;
wy=2*10^-3;
q=0.9;
m1=[1/og^2,0;0,1/og^2];
k=10^7;
syms m;
syms n;
m2=[-2*m/wx^2-1/og^2,0;0,-2*n/wy^2-1/og^2];
m3=[-2*m/wx^2-1/og^2,0;0,-2*n/wy^2-1/og^2];
m4=[-2*m/q*wx^2-1/og^2,0;0,-2*n/q*wy^2-1/og^2];
m5=[-2*m/q*wx^2-1/og^2,0;0,-2*n/q*wy^2-1/og^2];
M1=(i/k)*[m2,m1;m1,m3];
M2=(i/k)*[m2,m1;m1,m5];
M3=(i/k)*[m4,m1;m1,m3];
M4=(i/k)*[m4,m1;m1,m5];
S1=(det(A1+B1*M1))^-0.5-(det(A1+B1*M2))^-0.5-(det(A1+B1*M3))^-0.5+(det(A1+B1*M4))^-0.5;
M=3;
N=5;
S2='(1/M^2*N^2)*(factorial(M)*factorial(N)/(factorial(m)*factorial(M-m)*factorial(n)*factorial(N-n)))^2';
S3=symsum(S1*S2,n,1,5);
S4=symsum(S3,m,1,3);
ezplot(z,S4);
运行以后没有任何报错,但是图上只有一个点,z=0,S4=5,请问为什么会这样?怎样才能得到S4关于z变化的曲线呢?
l1=100;
f=5;
I=[1,0;0,1];
z=[0:5:20];
for j=1:1:4;
B=((1-l1/f)*z(j)+l1)*I;
end;
I1=[0,0;0,0];
A1=[A,I1;I1,A];
B1=[B,I1;I1,-B];
og=2*10^-3;
wx=10^-3;
wy=2*10^-3;
q=0.9;
m1=[1/og^2,0;0,1/og^2];
k=10^7;
syms m;
syms n;
m2=[-2*m/wx^2-1/og^2,0;0,-2*n/wy^2-1/og^2];
m3=[-2*m/wx^2-1/og^2,0;0,-2*n/wy^2-1/og^2];
m4=[-2*m/q*wx^2-1/og^2,0;0,-2*n/q*wy^2-1/og^2];
m5=[-2*m/q*wx^2-1/og^2,0;0,-2*n/q*wy^2-1/og^2];
M1=(i/k)*[m2,m1;m1,m3];
M2=(i/k)*[m2,m1;m1,m5];
M3=(i/k)*[m4,m1;m1,m3];
M4=(i/k)*[m4,m1;m1,m5];
S1=(det(A1+B1*M1))^-0.5-(det(A1+B1*M2))^-0.5-(det(A1+B1*M3))^-0.5+(det(A1+B1*M4))^-0.5;
M=3;
N=5;
S2='(1/M^2*N^2)*(factorial(M)*factorial(N)/(factorial(m)*factorial(M-m)*factorial(n)*factorial(N-n)))^2';
S3=symsum(S1*S2,n,1,5);
S4=symsum(S3,m,1,3);
ezplot(z,S4);
运行以后没有任何报错,但是图上只有一个点,z=0,S4=5,请问为什么会这样?怎样才能得到S4关于z变化的曲线呢?