Theone714
2013-05-07, 12:06
首先向大神敬礼!
其中参数L,Vr,nmax和矩阵vn,NnL都已经给出。以下求V矩阵,运行结果为一系列代数式,而不是具体的数,求教如何解决。谢谢了!马上就要答辩了!
以下为程序:
%求矩阵V
syms r;
for n=1:nmax;
for m=1:nmax;
S=r^(2*L)*exp(-(vn(n)+vn(m))*r^2)*r^2*Vr;
SVr=int(S,r,0,inf);
V(n,m)=NnL(n)*NnL(m)*SVr;
end
end
V
Theone714
2013-05-07, 12:18
你看这结果,我都@##¥¥%……%……
V =
[ 449169076339557/1125899906842624*2^(1/2)*pi^(1/2), 106599976701636443999710478336/361617953745637088156450169656500890852549993*1481940719142033^(1/2)*1125899906842624^(1/2)*pi^(1/2), 161655253518919425/11988582208060260352*11^(1/2)*10^(1/2)*pi^(1/2), 53951014947292733136068149248/1566975174144147530382761026886560851912962125*1161503988072565^(1/2)*1125899906842624^(1/2)*pi^(1/2), 7272434359024880625/74241011194871190388736*101^(1/2)*100^(1/2)*pi^(1/2)]
[ 106599976701636443999710478336/361617953745637088156450169656500890852549993*1481940719142033^(1/2)*1125899906842624^(1/2)*pi^(1/2), 6466210140756777/144115188075855872*5^(1/2)*10^(3/4)*pi^(1/2), 111382740536346287764785856512/1699811491478408399378706696409910662854940381*3749046423869371^(1/2)*9007199254740992^(1/2)*pi^(1/2), 290897374360995225/383634630657928331264*11^(1/2)*100^(1/2)*10^(3/4)*pi^(1/2), 258891820721706068740421976064/67655141884374944222076349576681027501695509049*5876796981885363^(1/2)*18014398509481984^(1/2)*pi^(1/2)]
[ 161655253518919425/11988582208060260352*11^(1/2)*10^(1/2)*pi^(1/2), 111382740536346287764785856512/1699811491478408399378706696409910662854940381*3749046423869371^(1/2)*9007199254740992^(1/2)*pi^(1/2), 581794748721990525/2305843009213693952*5^(1/2)*pi^(1/2), 776675462165118311774382194688/13330684246879168991083160252869846927378123277*2371105150627253^(1/2)*18014398509481984^(1/2)*pi^(1/2), 13086689199404413125/3069077045263426650112*11^(1/2)*100^(1/2)*pi^(1/2)]
[ 53951014947292733136068149248/1566975174144147530382761026886560851912962125*1161503988072565^(1/2)*1125899906842624^(1/2)*pi^(1/2), 290897374360995225/383634630657928331264*11^(1/2)*100^(1/2)*10^(3/4)*pi^(1/2), 776675462165118311774382194688/13330684246879168991083160252869846927378123277*2371105150627253^(1/2)*18014398509481984^(1/2)*pi^(1/2), 65433445997022075/4611686018427387904*50^(1/2)*10^(3/4)*pi^(1/2), 698810733818815213606514196480/26979407992745303512192882603262713613548328473*2999237139095497^(1/2)*72057594037927936^(1/2)*pi^(1/2)]
[ 7272434359024880625/74241011194871190388736*101^(1/2)*100^(1/2)*pi^(1/2), 258891820721706068740421976064/67655141884374944222076349576681027501695509049*5876796981885363^(1/2)*18014398509481984^(1/2)*pi^(1/2), 13086689199404413125/3069077045263426650112*11^(1/2)*100^(1/2)*pi^(1/2), 698810733818815213606514196480/26979407992745303512192882603262713613548328473*2999237139095497^(1/2)*72057594037927936^(1/2)*pi^(1/2), 11774697834795691875/147573952589676412928*50^(1/2)*pi^(1/2)]
vBulletin® v3.8.3,版权所有 ©2000-2025,Jelsoft Enterprises Ltd.